Monega Primary School

Monega Primary School Maths Calculation Policy

2023-2024

Contents Page

Rationale	1
How do I use this calculation policy?	2
Early Years Foundation Stage	4
Year 1	8
Year 2	13
Year 3	19
Year 4	25
Year 5	30
Year 6	36
Useful links	42

Maths Calculation Policy 2023-2024

Rationale:

This policy is intended to demonstrate how we teach different forms of calculation at Monega Primary School. It is organised by year groups and designed to ensure progression for each operation in order to ensure smooth transition from one year group to the next. It also includes an overview of mental strategies required for each year group [Year 1-Year 6]. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. base ten, apparatus), then pictorial (e.g. array, place value counters) to then facilitate abstract working (e.g. columnar addition, long multiplication).

It is important that conceptual understanding, supported by the use of representation, is secure for procedures and if at any point a pupil is struggling with a procedure, they should revert to concrete and/or pictorial resources and representations to solidify understanding or revisit the previous year's strategy.

This policy is designed to help teachers and staff members at our school ensure that calculation is taught consistently across the school and to aid them in helping children who may need extra support or challenges.

This policy is also designed to help parents, carers and other family members support children's learning by letting them know the expectations for their child's year group and by providing an explanation of the methods used in our school.

Maths Calculation Policy 2023-2024

How do I use this calculation policy?

Each page follows a similar format to help you find the information you need. Addition is paired with subtraction and division with multiplication as these operations are the inverse (opposite) of each other.

These are the objectives from the National Curriculum.

NON-negotiable year group coverage:

- recall multiplication and division facts for multiplication tables up to 12×12
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- divide a three-digit number by a one-digit number
estimate and use inverse operations to check answers to a calculation
solve problems involving multiplying and dividing, including the distributive law to multiply a two digit number by a one digit number, integer scaling solve problems involving multiplying and dividing, including the distributive law to multiply a twa
problems and harder correspondence problems such as n objects are connecting to m objects

Multiplication	Division
Expanded short multiplication of a two-digit number by single digit numbers.	Short division of 2-digit and 3-digit number by single digit numbers. Without regrouping (ensure are children are grouping not sharing) With regrouping (10) (20) (1ay) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (children could use concrete counters or drow warking out os a pictorial representation) NB Children can be exposed to remainders at this stage but it should not act as a specific teaching point until Year 5.
Vocabulary: lots of, groups, repeat, times, multiply, steps of, multiplied by, multiple of, double, product, expanded short multiplication.	Vocabulary: sharing, share equally, into groups, equal, divided by, divided into, left over, remainder, how many groups, divisible by, how many \qquad go into \qquad ? inverse, quotient, divider, short division, regrouping
This is some of the voca and that the children are	arythat will be used in lessons pected to know.

These examples show you the types of work and methods that children will be using in class.

Year Reception - Maths Calculation Policy

NON-negotiable year group coverage:

- Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer [within 10]
- Say one more and one less than a number

What adults could do:

- Use mathematical vocabulary and demonstrate methods of recording, using standard notation where appropriate
- Encourage children to make up their own story problems for other children to solve.

frames [working within 10]
Addition as increasing by combining two or more groups using concrete apparatus. Children construct calculations verbally or using cards [encourage notations when appropriate]

Number tracks can be used to support finding one more than a given number. $\qquad$$\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$
Number tracks can be used to support finding one more than a given number.

Year Reception - Maths Calculation Policy

NON-negotiable year group coverage:

- Solve problems, including doubling, halving and sharing.

What adults can do:

- Use mathematical vocabulary and demonstrate methods of recording, using standard notation where appropriate.
- Talk about the methods children use to answer a problem they have posed, e.g. 'Get one more, and then we will both have two.'
- Encourage children to extend problems, e.g. "Suppose there were three people to share the bricks between instead of two."

Multiplication
Multiplication can be introduced through repeated addition and
doubling related to real life contexts.
Can you double the number of spots on the ladybird?

This can be extended to writing the calculation by using addition [$5+5=10$].

Exceeding expectation - Children solve practical problems that involve combining groups of 2,5 , or 10.

How many wheels are there altogether?

Dividing by sharing into equal groups related to real life contexts.

There are 3 children and 12 biscuits. How many will each child have?

Dividing by practically halving an amount.

Vocabulary: Doubles, groups, ___times, once, twice, lots of, groups of, repeated addition.	Vocabulary:Sharing, into groups, halve, share, one each... two each... three each etc.

Year 1 - Mental Calculations

Non-negotiable year group coverage:

- number bonds ['story of' $2,3,4,5,6,7,8,9$ and 10]
- count forwards and backwards in ones from a given two-digit number
- count forwards and backwards in tens from any given two-digit number
- add and subtract ten from any given number
- add and subtract one single digit with another single digit
- add three single digits, spotting pairs which make 10
- find one more and one less
- count to and across 100, forwards and backwards
- add by putting the largest number first
- represent and use number bonds and related subtraction facts within 20
- Understand the concept of equality for the $=\operatorname{sign}[2=1+1 / 2+3=4+1]$

- begin to count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
- begin to say what three times 5 is by counting in 5 s
- double numbers to 10
- find half of even numbers up to 12 and know it is hard to halve odd numbers
- find half of even numbers by sharing
- Begin to use concrete and pictorial representations of 'groups of' to find how many sets of a small number make a greater number

Year 1 - Maths Calculation Policy

NON-negotiable year group coverage:

- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- add and subtract one-digit and two-digit numbers to 20 , including zero
- solve one step problems that involve addition and subtraction, using concrete apparatus and pictorial representations

Addition	Subtraction
Part-part whole circles and concrete apparatus to add. Children begin with using concrete apparatus to represent a given calculation eg. unifix cubes [0-10] and base ten [11-100]. Once this is secure, children can move on to drawing pictorial representations. Children will combine two sets of objects (aggregation) and move on to adding to a set (augmentation). $5+3=8$	Part-part whole circles and concrete apparatus to subtract.
$5+3$	

Pictorial representations using crossing out.

Number line to add the smallest number to the greatest number.
(Number lines are marked and jumps are made on the top of the
number line - number lines start from 0)

Vocabulary:add, and, altogether, more, total, whole number, partition, isthe same as/ equal to [equals sign], tens and ones, partpart whole circles, number bonds, how many more to make?

Vocabulary:subtract, take away, minus, leave, less, left over,tens and one, how many are left? How many are gone? Find the difference.

Year 1 - Maths Calculation Policy

NON-negotiable year group coverage:

- count in multiples of twos, fives and tens
- show that multiplication of two numbers can be done in any way (commutative) and division of one number can by another cannot
- solve one step problems involving multiplication and division, by calculating the answer using concrete apparatus, pictorial representation and arrays with the support of the teacher

| Multiplication |
| :--- | :--- |
| Making equal groups to multiply a one-digit number by 2, 5 and 10.
 (Children start off with concrete apparatus and pictorial representations and move on to
 abstract concrete apparatus) |
| Sharing into equal groups to divide by 2,5 and 10 .
 (Children start off with concrete apparatus and pictorial representations and move on to
 abstract concrete apparatus) |

Year 2 - Mental Calculations

Non-negotiable year group coverage:

- number bonds ['story of' up to 12, and pairs with a total of 20]
- add and subtract numbers mentally, including: a two-digit number and ones [which includes bridging the tens]; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
- add and subtract 10 and small multiples of 10 from any given number
- partitioning a number in different ways to support addition and subtraction [taken from Place Value]
- use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100

Subtraction

- count in steps of 2 and 5 starting from zero; count in steps of 10 from any number forwards and backwards
- begin to count in 3 s
- begin to learn the $2 \times 3 x, 5 x$ and $10 x$ tables, seeing these as 'lots of' eg. 5 lots of 2
- using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s times tables
- double and halve numbers to 20
- begin to double multiples of 5 , to 100
- begin to double two-digit numbers less than 50 with one's digits of $1,2,3,4$ or 5
- show that multiplication of two numbers can be done in any way (commutative) and division of one number can by another cannot
- relate division to grouping [how many groups of 5 in 15?]

Counting in steps

Count in $2 s, 5 s$ and 10 s Begin to count in 3s

Doubling and halving

Begin to know double of multiples of 5 to 100 eg . double 35 is 70

Grouping

Use arrays to find answers to multiplication and relate to times tables eg. 3×4 as three lots of four things and 6×5 as counting in fives six times.

Using number facts

Know doubles to double 20

Start learning $2 x, 5 \times$ and $10 x$ times tables eg. $2 \times 5=10,3 \times 5=15,4 \times 5=20$
Subtraction Division
Using place value $55-32$ is $50-30$ and $5-2$, combining the two totals $=20$
Taking away 3

Counting up

Find a difference between two numbers on a line by
counting on eg. 51-47

Year 2 - Maths Calculation Policy

NON-negotiable year group coverage:

- add and subtract numbers using concrete objects and pictorial representations, including: a two digit numbers and ones; a two digit number and tens; two two-digit numbers [recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers]
- solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; applying their increasing knowledge of mental and

Vocabulary: plus, altogether, sum, total, increase, partition, inverse, greatest, smallest, exchange , is the same as/ equal to [equals sign], part part whole circles.

Vocabulary: subtract, subtraction, minus, less, inverse, decrease, greatest, smallest, difference, fewer than., exchange, part-part whole circles. Borrowing should not be used as a term because it implies that the borrowed number needs to go back. It is included here as it used to be a common term.

Year 2 - Maths Calculation Policy

NON-negotiable year group coverage:

- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs
- solve problems involving multiplications and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts
- recognise and use the inverse relationship between multiplication and division and use this to check calculations and solve missing number problems.

Multiplication	Division
Grouping to multiply within known times tables.	Grouping/sharing to divide within known times tables. Children to use counters as a concrete apparatus and move on to drawing a pictorial representation.

$$
18 \div 3=6
$$

Sharing

Children can move on to creating arrays to show multiplication. This can be used to show how multiplication and division link.

Grouping

(ensure that children understand that grouping and sharing produce the same answer)

Vocabulary: sharing, into groups, halve, share, one each... two each... three each etc. divided by, divided onto, left over, how many groups?

Year 3 - Mental Calculations

Non-negotiable year group coverage:

- number bonds ['story of' numbers up to 20]
- number bonds of multiples of 10 with a total of 100
- partitioning a number of different ways to support addition and subtraction $[300+8+50$ =
$358 / 536-30=506]$
- find 10 or 100 more or less than a given number
- add and subtract numbers mentally, including: a three-digit number and ones, a threedigit number and tens, a three-digit number and hundreds
- subtract two-digit number from numbers >100 by counting up when appropriate
- add and subtract 9 and 11 by adjustment
- add pairs of 'friendly' three-digit numbers [320+450]
- Use addition and subtraction facts [9-7 =2] to derive related facts [89-7=82] • start with greatest first when adding

Addition

Using place value

Count in hundreds eg. Knowing $475+200$ as $475,575,675$ Add multiples of 10,100 and $£ 1$ eg. $746+200$ or $746+4068+74$ as $60+70$ and $8+4$, combing the two totals.

Counting on

Add a three-digit and two-digit numbers by adding h, t and o eg. $125+34$ as $100+20+30+5+4$ Add near multiples of 10 and $100 \mathrm{eg} .67+39$ as $(67+40)-1$

Using number facts

Number bonds to 100 eg. $65+35,47+53,71+29$ etc.
Adjustment when adding 9 and $11 \mathrm{eg} .27+9$ as $(27+10)-1$ or $36+11$ as

$=142$

- count for 0 in steps of 4, 8,50 and 100 [pupils should now know and use multiples of 2, $3,4,5,8,10,50$ and 100]
- through doubling, they connect the 2,4 and 8 multiplication tables
- multiply and divide whole numbers by 10 and 100
- use place value and number facts in mental multiplication and division [20x5 is 15×10 / $84 \div 4$ is half of 42]
- partition teen numbers to multiply by a single digit [3×14 is 3×10 add 3×4]
- show that multiplication of two numbers can be done in any way (commutative) and division of one number can by another cannot
- double numbers up to 50
- halve even numbers to 100 , halve odd numbers to 20
- use multiplication and division facts [$3 \times 2=6$ so $6 \div 3=2$] to derive related facts [$30 \times$ $2=60$ so $60 \div 3=20$]

13×4

Count in steps - sequences

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s
eg. Colour the multiples on a 100 square or jumps on a landmarked number line

Doubling and halving

Find doubles to double 50 using partitioning
Use doubling as a strategy in multiplying by $2 \mathrm{eg} .18 \times 2$ is double 18

Grouping

Recognise that multiplying is commutative eg. $8 \times 4=4 \times 8$
Multiply multiples of 10 by a single-digit eg. $30 \times 8=240(3 \times 8=24)$ Multiply friendly two-digit numbers by single digit numbers eg.

Using number facts

Know $2 x, 3 x, 4 x, 5 x, 8 x$ and $10 x$

Multiplication

Using place value
 Count back in hundreds eg. Knowing 372-200 as 372, 272, 172

 Subtract multiples of 10,100 and $£ 1$ eg. $476-40=436$ or $436-300=136$ $348-143$ as $300-100,40-40$ and $8-3$, combing the three totals.

Counting back

Subtract two three-digit numbers by counting back in h, t and $o-20 \quad-100 \quad 205$ eg. 763-121 as 763-100-20-1
Subtract near multiples of 10 and 100 eg. 648-199 as $(648-200)+1$

Counting up

Find the difference between two numbers bycounting up from the smaller to largereg. 121-87 \quad i
$\begin{array}{llll}87 & 90 & 100 & 120 \quad 12\end{array}$

Using number facts

位

Count in steps - sequences

Count in $2 s, 3 s, 4 s, 5 s, 8 s$ and $10 s$
eg. Colour the multiples on a 100 sq ,

Doubling and halving

Find half of even numbers to 100, using partitioning

Use halving as a strategy in dividing by $2 \mathrm{eg} .36 \div 2$ is half of 36

Grouping

Recognise that dividing is not commutative eg. $16 \div 2$ is not equal to $2 \div 16$
Relate division to multiplication 'with holes in' eg. X $5=30$ is the same as $30 \div 5=$? therefore we can count in 5s to find the answer

Divide multiples of 10 by a single-digit eg. $240 \div 8=30(24 \div 8=3)$

Using number facts

Know half of even numbers to 40 and of 0 to 200 eg. Half of 170 is 85
Know $2 x, 3 x, 4 x, 5 x, 8 x$ and $10 x$ division facts

Year 3 - Maths Calculation Policy

NON-negotiable year group coverage:

- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction

Vocabulary: Add, addition, plus, and, altogether, more, sum, total, increase, number line, count on, partition, inverse, how many more to make? How many more is \qquad than \qquad _? Hundreds, tens, ones,
column method.

Vocabulary: subtract, subtraction, take away, less, how many are left/left over? Inverse, decrease, difference, fewer than, more than, hundreds, tens, ones, boundary, how much less is \qquad than \qquad ? written method.

Borrowing should not be used as a term because it implies that the borrowed number needs to go back. It is included here as it used to be a common term.

Year 3 - Maths Calculation Policy

NON-negotiable year group coverage:

- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including a two digit number times a one digit number, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems which n objects are connected to m objects

(ensure that children are grouping the tens and ones and that the amount of groups relates to the divider)

Division

Grouping to divide two-digit numbers by one-digit numbers.
Without regrouping
$96 \div 3=32$
$90 \div 3=30$
$6 \div 3=2$

	3	2
3	9	6

With regrouping

(ensure that children are grouping and not sharing in order to lead into short division)

NB Children will use the short division as a template to write their answer. They will look at 96 as a whole number rather than digits.

Vocabulary:equal, halve,equal groups of,divided by, dividedinto, how many groups? regrouping, part-part whole circles.

Year 4 - Mental Calculations

Non-negotiable year group coverage:

- know by heart/quickly derive number bonds to 100 and to $£ 1$ [add to the next hundred and pound]
- find 1000 more or less than a given number
- count backwards through zero to include negative numbers
- round any number to the nearest 10,100 or 1000
- add and subtract any two-digit numbers by partitioning or counting on
- add and subtract multiples of 10,100 and 1000 to two-digit and three-digit numbers
- add and subtract $£ 1,10$ p and 1 p to amounts of money
- derive quickly doubles of multiples of 10 up to $500 \mathrm{eg} .360+360$
- use place value and number facts to add one, two, three and four-digit numbers where a mental calculation is appropriate
- subtract by counting up
- count form 0 in steps of 6, 7, 925 and 1000 [children should know by heart all the multiplication facts up to 12×12 J
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; multiplying by 10 and 100; dividing by 1 ; multiplying together three numbers
- multiply multiples of $10,100,1000$ by single digit numbers [300×6 or 4000×8]
- use distributive law to multiply larger numbers [36×5 could be 30×5 and 6×5] - adjustment by spotting 'nearly' numbers eg 6×19 is nearly 6×20
- recognise factors up to 12 of two-digit numbers.
- use understanding of place value and number facts in mental multiplication [36×5 is half of $36 \times$ 10 and $50 \times 60=3000$]
- partition 2-digit numbers to multiply by a single-digit number mentally [4×24 as 4×20 and 4×4]
- multiply near multiples using rounding [33×19 as $33 \times 20-33$]
- find doubles to double 100 and beyond using partitioning
- begin to double amounts of money [$£ 35.60$ doubled $=£ 71.20$]
- show that multiplication of two numbers can be done in any way (commutative) and division of one number can by another cannot

Count in steps - sequences

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}$, $50 s, 100$ sand 1000 s Doubling and halving
Find doubles to double 100 and beyond using
partitioning, using derived facts
Begin to double amounts of money eg. $£ 3.50$ doubled is $£ 7$ Use doubling as a strategy in multiplying by 2,4 and $8 \mathrm{eg} .34 \times 4$ is double 34 and double again.

Multiplication

Grouping

Use partitioning to multiply two-digit numbers by single-digit numbers
Multiply multiples of 100 by single-digit numbers using table facts eg. $400 \times 8=3200(4 \times 8=32)$ Multiply using near multiples by rounding eg. 24×19 as $(24 \times 20)=24$
Using number facts
Know times tables up to 12×12

Using number facts

Number bonds to 100 and to the next multiple of $100 \mathrm{eg} .1353+47$
Adjustment when adding 9 and $11 \mathrm{eg} .27+9$ as $(27+10)-1$ or $36+11$ as $(36+10)+1$

Using place value

Count back in thousands eg. 4378-3000 as 4378, 3378, 2378, 1378
Take away multiples of $10,100,1000$ and $£ 1$ eg. 8392-50 or 6723-3000
Partitioning eg. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and $7 p-4 p$ or $7493-2020$ as $7000-2000$ and $90-20$

Counting back

Count back eg. 6482-1301 as 6482-1000 then - 300 then - 1 Subtract near multiples of 10, 100 and 1000 eg. 3522-1999 as (3522-2000) + 1

Counting up

Find a larger difference between two numbers by counting up from the smaller number to the larger number eg. $1506-$ 387

Using number facts

Number bonds to 100 and to the next multiple of 100 eg. $100-76=24$
Adjustment when adding 9 and 11 eg. 27-9 as (27-10) +1 or $36-11$ as ($36-10$) - 1

Count in-steps-sequences

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}$,
25s,

```
0
llllllllllll
```

50s, 100s and 1000s Doubling and halving
Find halves of even numbers to 200 and beyond using partitioning, using derived facts
Begin to halve amounts of money eg. $£ 9$ halved is $£ 4.50$ Use halving as a strategy in dividing by 2,4 and $8 \mathrm{eg} .164 \div 4$ is half of 164 and halved again.

Grouping

Use multiples of 10 times the divisor to divide by numbers <10 eg. $45 \div 3$ as $30 \div 3$ and $15 \div 3$
Divide multiples of 100 by single digits numbers using division facts eg. $3200 \div 8=400$

Using number facts

Know times tables up to 12×12 and all related division facts Use division facts to find unit and non-unit fractions of amounts

Year 4 - Maths Calculation Policy

NON-negotiable year group coverage:

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

Addition
Compact column addition to add numbers with up to 4 digits.

Without exchanging

th	h	t	0
2	4	3	7
+	3	4	2
2	7	7	9

With exchanging

Subtraction

Compact column subtraction to subtract numbers with up to 4 digits.

Without exchanging (crossing out)

th	h	t	0
2	6	9	3
-		2	5
2	4	4	1

With exchanging

$$
\begin{array}{rrrr}
\text { th } & h & t & 0 \\
\hline 2 & 6 & { }^{4} 5 & { }^{1} 2 \\
-\quad 1 & 4 & 2 & 7 \\
\hline 1 & 2 & 2 & 5 \\
\hline
\end{array}
$$

Vocabulary: add, addition, plus, make, more, sum, total, increase, inverse, altogether, how many more to make_? How many more is than \qquad ? partition, thousands, hundreds, tens, ones, count on, exchange, column method.

Vocabulary: subtract, subtractiontake away, minus, decrease, leave, how many are left/left over? More than, fewer than, difference, tens/hundreds boundary, how much more/less is \qquad ?, inverse, column method.
Borrowing should not be used as a term because it implies that the borrowed number needs to go back.

Year 4 - Maths Calculation Policy

NON-negotiable year group coverage:

- recall multiplication and division facts for multiplication tables up to 12×12
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- divide a three-digit number by a one-digit number
- estimate and use inverse operations to check answers to a calculation
- solve problems involving multiplying and dividing, including the distributive law to multiply a two digit number by a one digit number, integer scaling problems and harder correspondence problems such as n objects are connecting to m objects

(children could use concrete counters or draw working out as a pictorial representation)
NB Children can be exposed to remainders at this stage but it should not act as a specific teaching point until Year 5.

Vocabulary: lots of, groups, repeat, times, multiply, steps of, multiplied by, multiple of, double, product, expanded short multiplication.

Vocabulary: sharing, share equally, into groups, equal, divided by, divided into, left over, remainder, how many groups, divisible by, how many \qquad go into \qquad ? inverse, quotient, divider, short division, regrouping

Non-negotiable year group coverage: Year 5 Mental Calculation

- add and subtract numbers mentally with increasingly large numbers
- know numbers bonds to 1 and to the next whole number
- add to the next 10 from a decimal number, e.g. $13 \cdot 6+6 \cdot 4=20$
- add and subtract numbers with two significant digits only, using mental strategies [3.4 $+$
4.8 or $23,000+47,000 / 6.2-4.5$ or $72,000-47,000]$
- add and subtract one or two-digit multiples of $10,100,1000,10,000$ and 100,000 [8000 $+$
7000 or $600,000+700,000 / 8000-3000$ or $600,000-200,000]$
- add and subtract near multiples of 10, 100, 1000, 10,000 and 100,000 to other numbers
[82,472 + / - 30,004]
- add and subtract decimal numbers which are near multiples of 1 or 10 , including money $[6.34+/-1.99$ or $£ 34.59+/-£ 19.95]$
- use counting up subtraction with knowledge of number bonds to $10 / 100$ or $£ 1$ [£10 £3.45]
- use place value and number facts to add two or more friendly numbers including money and decimals. $[3+8+6+4+7,0.6+0.7+0.4$, or $2,056+44]$

Addition

Using place value

Count in steps of $10,100,1000,0.1 \mathrm{~s}, 0.01 \mathrm{~s}$ from any given number Partitioning eg. $7348+2187$ as $7348+2000+100+80+7$ or $2.4+5.8$ as $2+5,0.4+0.8$ and combine the totals together.

Counting on

Count on from the greatest number eg. $6834+3005$ as $9834+5$
Add near multiples eg. $82,472+30,004$ as $(82,472+30,000)+4$ Add two decimal numbers by adding the o then ths then hths eg $5.72+3.05$ as $5.72+3+0.5$

Using number facts

Know number bonds to 1 and to the next whole number eg. $0.4+0.6$ or $5.7+0.3$
Add to the next 10 from a decimal number eg. $7.8+2.2=10$

- know by heart all of the multiplication and division facts up to 12×12
- multiply and divide whole numbers and those involving decimals by 10, 100, 10 10,000
- recognise and use square numbers and cube numbers, and the notation for squ cubed
- use doubling and halving as mental multiplication and division strategies [58x5 $(58 \times 10) \div 2 / 34 \div 5$ is equal to $(34 \div 10) \times 2$]
ctors, including finding all factor number, and common factors of two numbers
- use partitioning to double and halve, including money
- partition two-digit numbers, including decimals, to multiply by a single-digit nu mentally $[6 \times 27$ as $6 \times 20+6 \times 7 / 6.3 \times 7$ as $6 \times 7+0.3 \times 7]$
- divide larger numbers mentally by subtracting the $10^{\text {th }}$ and $100^{\text {th }}$ multiple as ap [$96 \div 10$ is $10 \times 6=60$ and $6 \times 6=36$]
- use common factors to simplify fractions; use common multiples to express fra the same denomination

Multiplication

Doubling and halving

Use double and halving strategies when multiplying by 2, 4, 8, 5 and 20 Double amounts of money using partitioning eg. $£ 6.73$ doubled is double $£ 6$ plus double 73 p
E12

Grouping

Multiply decimals by 10,100 and 1000 eg $3.4 \times 100=340$
se partitioning to multiply friendly two-digit and three-digit numbers 2400 single digits eg. 402×6 as $(400 \times 6)+(2 \times 6)$
se partitioning to multiply decimal numbers by single digit numbers eg. $4.5 \times 3^{2} \mathrm{as}^{4}(4 \times 3)+(4 \times 0.5)$ Multiply using near multiples by rounding eg. 32×29 as (32×30) -32
Using number facts
Use times tables facts up to 12×12 to multiply multiples of the multiplier eg. $6 \times 4=24$ so $60 \times 4=240$ and $600 \times 4=2400$
Know square numbers and cube numbers

Taking away

Use place value to subtract decimals eg. 4.58-0.08 or 6.26-0.2 etc
Take away multiples of power of 10 eg. 15,672 - 300 or 4.82-2
Partition or count back eg. 3964-1051 or 5.72-2.01
subtract near multiples eg. 86,456-9999 or 3.58-1.99

Counting up

Find a difference between two numbers by counting up from the smaller to the greater number eg. 2009-869

eg. buy toy for $£ 6.89$ using $£ 10$

Using number facts

Derived facts from number bonds to 10 and 100 eg. $2-0.45$ using $45+55=100$
Number bonds to $£ 1, £ 10$ and $£ 100$ eg. $£ 4.00-£ 3.86=14$ p

Doubling and halving
Halve amounts of money using partitioning eg. half of $£ 14.84$ is half of
$£ 14$ and half of 84 p
Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and $20 \mathrm{eg} .115 \div 5$ as double 11

Grouping

Divide numbers by $10,100,1000$ to obtain decimal answers with up to three places eg. $340 \div$ Use $10^{\text {th, }} 20_{\text {th, }} 30_{\text {th }}$ multiples of the divisor to divide friendly two-digit and three-digit numbers $186 \div 6$ as $180 \div 6$ plus $6 \div 6$
Find unit and non-unit fractions of large amounts eg. $3 / 5$ of 265 is $3 \times(265 \div 5)$

Using number facts

Use division facts up to $12 x 12$ to divide numbers by single-digit numbers eg. $3600 \div 9$ as $36 \div$ Know square numbers and cube numbers

Year 5 - Maths Calculation Policy

NON-negotiable year group coverage:

- add and subtract whole numbers within a million, including using formal written methods (columnar addition and subtraction)
- add and subtract decimal numbers, including amounts of money
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Vocabulary:subtract, subtraction, take away, minus, difference, decrease,exchange, decimal

Year 5- Maths Calculation Policy

NON-negotiable year group coverage:

- multiply numbers up to 4 digits by a one or two-digit number using a formal written method, including long multiplication for two-digit numbers
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
Multiplication

Compact short multiplication of a four-digit number
digit number.

	2	4	0	3
x				6
1	4	4	1	8
	2		1	

Long multiplication of a four-digit number by a two-digit number.

(2894×5)
(2894 x 10)
(Please note the placement of the digits when the column boundary is crossed. Use of different colours is a useful strategy.)

NB Expanded short multiplication provides a scaffold for ALL children.

Division

Short division of a four-digit number by a one-digit number, using remainders when necessary

NB The use of concrete apparatus can be used as a scaffold for ALL children (see Year 4)

Vocabulary:lots of, groups,times, multiply, multiplied by, multiple of, product,short multiplication, long multiplication.

Year 6 - Mental Calculations

Non-negotiable year group coverage:

- perform mental calculations, including with mixed operations and large numbers
- know by heart all number bonds to 100 and use these to derive related facts [3.46+0.54 = 4]
- use number bonds to 100 to support subtraction through complementary addition [1000 -

654 as $46+300$] and quickly derive bonds to 1000

- add small and large whole numbers, using place value [34,000 + 8000]
- add negative numbers in context such as temperature
- add two one-place decimal numbers or two-place decimal numbers less than 1 [4.5 +6.3 or
$0.24+0.33]$
- use number bonds to 1 and 10 to mentally subtract any pair of one-place or two-place decimal numbers using complementary addition [10-3.65 as $0.35+6$]
- use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to two places [467,900-3,005 or 4.63-1.02]
- add and subtract positive and negative numbers [calculate rise in temperature or continue a sequence]

Addition			
Using place value			
Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}$, and 0.001 s eg . knowing what 0.001 more than 6.725 is Partitioning eg. $9.54+3.25$ as $9+3$ and $0.5+$			
$0.2 \text { and } 0.04+0.05 \text { to get } 12.79$		0.0012 5 1	
Counting on	6.7 712	6	
Add two decimal numbers by adding the o then ths then hths or tths eg. $6.31+3.46$ as $6.31+3+0.4+0.06$			
Add near multiples to 1 and 10 eg. $6.75+9.95$ as $(6.75+10)-0.05$ or $6.35+0.99$ as $(6.35+1)-0.01$			
Using number facts			
Number bonds to 1 and to the next multiple of 1 eg. $0.63+0.37$ or $2.35+$			
0.645 Add to the next ten eg. $4.62+0.38$		4	4.5462

- identify common factors, common multiples and prime numbers and use factors in mental multiplication [326×6 is 652×3] and division [$438 \div 6$ is $219 \div 3$]
- use place value and number facts as mental strategies [40,00 $\times 6=240,000$ or 0.03×6 =

0.18]

- use tests for divisibility to aid mental calculations
- use doubling and halving to multiply and divide by $2,4,8,5,20,50$ and 25 [28×25 is $1 / 4$ of 28×100]
- use rounding to support mental multiplication [34 $\times 19$ is $(34 \times 20)-34$]
- multiply and divide one and two-place decimal numbers up to and including 10 using place value and partitioning [3.6×4 is $12+2.4 / 2.4 \div 6$ is $(24 \div 6) \div 10$]
- double and halve decimal numbers with up to two places using partitioning [36.73 x 2 is double 36 plus double 0.73 / half of 36.86 is half of 36 plus half of 86]
- know and use equivalence between simple fractions, decimals and percentages, including in different contexts
- recognise a given ratio and reduce it to its lowest terms
Multiplication

Doubling and halving
 Use doubling and halving as strategies in mental multiplication.

 Double decimal numbers with up to 2 places using partitioning eg. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)
Grouping

Use partitioning as appropriate eg. 3060×4 as (3000x4) + (60 x
$4)$ or 8.4×8 as $(8 \times 8)+(0.4 \times 8)$
Use factors in mental multiplication eg. 421×6 as 421×3 and doubled or 3.42×5 is half of $3.42 \times$ 10
Multiply decimal numbers using near multiples by rounding eg. 4.3×19 as $(4.3 \times 20)-4.3$

Using number facts

Use times tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to two-decimal places eg. $6 \times 4=24$ so $0.06 \times 4=0.24$

Subtraction

Taking away

Use place value to subtract decimal numbers eg. 7.78-0.08 or 16.26-0.2 etc
Take away multiples of power of 10 eg. 123,956-400, 686,109-40,000 or 7.82-0.5
Partition or count back eg. 3964-1051 or 5.72-2.01
Subtract near multiples eg. 360,078-99,998 or 12.83-0.99

Counting up

Count up to subtract numbers from multiples of $10,100,1000$, 10,000 Find a difference between two decimal numbers by counting up from the smaller the greater number eg. $1.2-$ 0.87

Using number facts

Derive facts from number bonds to 10 and 100 eg .5 0.65

Number bonds to $£ 1, £ 10$ and $£ 100$ eg. $£ 7.00-£ 4.37$

Doubling and halving
Use doubling and halving as strategies in mental division. Halve decimal numbers with up to two-places using partitioning eg. half of 38.86 is half of 38 plus half of 0.86 .

Grouping

Use $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }} . . .100^{\text {th }}, 200^{\text {th }}$ etc. multiples of the divisor to divide larger numbers eg. $378 \div 9$ as $360 \div 9$ and $18 \div 9$
Use tests for divisibility eg. 135 divides by 3as $1+3+5=9$ and 9 is in the $3 x$ tables.

Using number facts

Use division facts up to 12×12 to divide decimal numbers by single-digit numbers eg. $1.17 \div 3$
$1 / 100$ of $117 \div 3$ (0.39)

Year 6 - Maths Calculation Policy

NON-negotiable year group coverage:

- use their knowledge of the order of operations to carry out calculations involving the four operations
- use column addition to add and subtract numbers with up to 6 digits
- use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve problems involving addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Addition	Subtraction
Estimate by calculating prior to written strategy.	Estimate by calculating prior to written strategy.

$328,751+123,595 \longrightarrow 300,000+100,000 _400,000$ (see answer below)

Compact column addition to add numbers with up to 6 digits.

Compact column addition to add decimal numbers with up to 2 places.

NB Expanded column addition provides a scaffold for ALL children.

Estimate by calculating prior to written strategy.

$$
328,751+123,595300,000+100,000 \quad 400,000 \text { (see answer below) }
$$

Column subtraction to subtract numbers with up to 6 digits.

5	8	${ }^{2} \mathscr{Z}^{1}$	${ }^{1}$	${ }^{3} \mathscr{A}^{1}$	1	
-	1	4	2	7	3	5
4	4	0	7	0	6	

Compact column subtraction to subtract decimal numbers with up to 2 places.

NB Expanded column subtraction provides a scaffold for ALL children.

Vocabulary: add, addition, sum, total, increase, inverse, altogether, compact column addition, column boundary	Vocabulary: subtract, subtraction, minus, decrease, leave, difference, column boundary

Year 6 - Maths Calculation Policy

NON-negotiable year group coverage:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- use their knowledge of the order of operations to carry out calculations involving the four operations
- use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve problems involving multiplication and division

Multiplication	
Estimate by calculating prior to written strategy.	
$5586 \times 12 _6000 \times 10-60,000$ (see answer below)	

Long multiplication of a 4-digit number by a two-digit number.

	5	5	8	6
x	1	1_{1}	1_{1}	2
1	1	1	7	2
5	5	8	6	0
6	7	0	3	2
	1	1		

		4	7	6
x			2,	3
	1_{1}	4_{1}	2	8
	9	5	2	0
1	0	9	4	8

(Please note the placement of the digits when the column boundary is crossed. Use of different colours is a useful strategy.)

Useful links

Interactive five frame - http://www.fuelthebrain.com/games/number-flash/ Interactive ten frame - http://www.fuelthebrain.com/games/number-flash/ ITPs - http://www.taw.org.uk/lic/itp/num grid.html 100 SPLAT square - http://www.primarygames.co.uk/pg2/splat/splatsq100.html The National Strategies: Teaching children to calculate mentally http://dera.ioe.ac.uk/778/1/735bbb0036bed2dcdb32de11c7435b55.pdf Woodlands maths games -
http://www.woodlandgrange.leics.sch.uk/iwb/KS1\ Mathematics.htm

